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Correlation functions of the classical Heisenberg model 
I. High temperature behaviour 

J Rae? 
Department of Physics, Queen Mary College, Mile End Road, London El 4NS, UK 

Received 13 September 1974 

Abstract. The classical Heisenberg model, with one lattice and three spin dimensions, has 
recently been solved for general anisotropy in terms of ellipsoidal wavefunctions. These 
functions are used here to obtain exact expressions for the pair correlation functions and 
susceptibilities in the three spin directions. Explicit formulae, valid at high temperatures, 
are derived for these quantities on the basis of known series expansions for ellipsoidal 
functions and it is shown that these formulae reduce to known results in the partially 
anisotropic and isotropic cases. 

1. Introduction 

In a recent publication (Rae 1974) it was shown that the one-dimensional anisotropic 
classical Heisenberg model can be solved in terms of ellipsoidal wavefunctions by the 
transfer matrix technique. The Hamiltonian for the model may be taken as 

N 

where (xj, yj,zj) is a point on a unit sphere representing the orientation of the jth 
classical spin and a, b and c are interaction constants. The ‘transfer matrix’ for this 
model is an integral operator 9 given by 

[9f] (x, y, z )  = [ exp[v(axx’ + byy’ + czz’)]f(x’, y’, z’), (2) 

with v = l/kBT, the inverse temperature, and the integral taken over the unit sphere. 
We parametrize the above Cartesian variables by ellipsoidal coordinates 

a = kl sn a x =  ksnpsny  

b = ikl cn a . k  
k l  

y = i-cn/3cny (3) 

c = i ldna  

where 8, y now label the unit sphere and a, b, c are replaced by parameters k, 1 and a. 
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z =-dnBdny 

k l  
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The Jacobian elliptic functions are of modulus k with k ,  = J(1 - k 2 ) .  In terms of the 
new variables the eigenvalue equation for 4 is 

j j exp[$~k:  sn u sn p sn y sn b' sn y' - i k 3  cn a cn p cn y cn B' cn 7' 8n 
S 

+ i dn U dn p dn y dn p' dn y') (sn2y' - sn2P')f(B', y') d p  dy' 

= Lf ( A  Y) (4) 

in which the field of integration S has y' ranging from - 2K to + 2K and p' from K - 2iK' 
to K + 2iK', K and K' being the usual complete elliptic integrals. Equation (4) has as 
eigenfunction solutions the ellipsoidal surface wavefunctions elp(B, y) of all eight types 
and with all allowed indices (for definitions and details see Arscott 1964 or Rae 1974). 
Knowledge of these eigenfunctions allows most properties of interest to be calculated 
for the model : this article examines some aspects of the pair correlation functions. 

In the following section we define the pair correlation functions to be examined and 
obtain suitable expressions for them in terms of the eigenfunctions and eigenvalues 
mentioned above. Section 3 gives an account of the method of obtaining explicit high 
temperature series for the correlation function ( x j x ,  + ,) while 0 4 gives the corresponding 
results for the y and z correlations and the x, y and z susceptibilities. In the concluding 
section we check the results by calculating (H) and show that the present results 
reduce to the known formulae in the extreme anisotropic and completely isotropic 
cases. The calculations in this article rely heavily on the evaluation of integrals of 
elliptic functions, the details of which are not given in the text. In an appendix we outline 
the technique used for these integrals and an example of its application. 

2. The pair correlation functions 

For convenience we suppose that the eigenvalues of equation (4), for a given value of v ,  
are put in order of decreasing magnitude A,, A,,. . . and that the corresponding eigen- 
functions are labelled f o , f i , .  . . or, if we wish to indicate to which spin the argument 
belongs, fo(j) etc. The pair correlation function for x components is, if we choose cyclic 
boundary conditions, 

with ZN the partition function and Wtr) the rth iterated kernel, the kernel of 9'. We 
may write with normalized eigenfunctions 
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and for large N replace Z N  by 1; so that 

This last expression is, of course, independent of j. 
In a similar way the correlation functions ( y j y j + , )  and ( z j z j + , )  have the same form 

as (6)  but with the x j  inside the integral replaced by y j  and z j  respectively. 
The integral J (dR/4z)f,xfo will not always be nonzero. We know from previous 

work (Rae 1974) that fo corresponding to the maximum eigenvalue is the function 
uelp:(P, y) and from (3) we have x = k sn P sn y. It follows that xfo has the same parities 
as the functions selp and by the completeness of ellipsoidal wavefunctions may be 
expanded in a series of selp functions. By orthogonality the only choices off, giving a 
nonzero result in (6)  will be 

selp';,+ l(P, Y), 

and as p runs over the values 0 to a, n and m run over the allowed values n : O  . . . CO, 

m : 0 .  . . n. If we denote the corresponding eigenvalues by SA&+ we may rewrite (6 )  as 
C O n  

n = O  m = O  
(7) 

An analogous argument gives for the y correlations, in an obvious notation, 

and for the z correlations 

(12) 
1 

KTn+ = (sn2y - sn2P)- dn P dn Y delPTn+ 1(P, Y) uelp:(P, Y) dP dy. 

For later use we also record here expressions for the self-correlation functions 

871 k l  
S 

(r = 0). We have 

= 871 ss (sn2y - sn2/3)k2 sn2P sn2y[uelp:(P, y)]' dP dy, (13) 
S 



3 50 J Rae 

and similarly 

1 
(22) = 11 (sn2y - sn2& dn’j? dn’y[uelp%g, y)]’ dp dy, ’ 871 k: 

S 

Alternative expressions may be obtained by setting r = 0 in (7), (9) and ( 1  1); these are 
related to (13), (14) and (15) by Parseval’s theorem. 

3. (xjxj+,.) at high temperatures 

The exact expressions (7), (8) are of little use unless more explicit forms are available for 
the eigenvalues and the integrals. For high temperatures such forms may be obtained 
from the standard expansions of el functions as power series in v. In order to calculate 
the correlation function we have to know: (i) which of s & + ~  is greatest for v small, 
(ii) an expansion for this S A  ; and (iii) expansions for the related integrals. 

For point (i) above we may argue as follows. We let 

f =  g,+vg,+ . . . ,  A = po+vp1+ . . . 

in the eigenvalue equation (4) and equate coefficients of equal powers of v. This yields 

!f // (sn2y‘ - sn2p)(k31 sn c1 sn /3 sn y sn 8’ sn y’ + . . .)go dfl‘ dy’ 
871 

S 

and so on. It follows from (16) that unless go is a constant po is zero. But the only elp 
function whose leading term is a constant is uelpg (Arscott 1956) so this is theeigenfunction 
corresponding to the maximum eigenvalue ; this was already used in the calculation of 
the partition function (Rae 1974). With po  = 0 the equation (17) gives that either 
p1 = 0 or go@, y)  is of the form 

c o + c l  sn /I sn y + c 2  cn /I cn y + c 3  dn fi dn y .  

The series expansions for el functions (Arscott 1956) show that the only possibilities are 
selpy , celpy , delpy . We may continue the argument in this way to show that an eigen- 
value corresponding to elp,” has a leading term of order v”. Thus for the point (i) under 
consideration we need only SA(: corresponding to n = m = 0. 

From Arscott (1956) we have 

N~ uelg(z) = 1 + &v2I2k2 sn2z + O(v4), 

N ,  sely(z) = sn z+&v212k2 sn3z+O(v4), 
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where N o  and N I  are normalization constants to be determined by the normalization 
condition 

A short calculation with (18) and (19) gives 

1 N :  = -[1 +&y2P(l+k2)+0(v4)]. 
k J 3  

In the eigenvalue equation (4) for eigenfunction selpy we may put y = K, fl = K + iK’. 
This gives, using (19), 

N :  SAY selpy(K + iK’, K) 

= 1s (sn2y’ - sn2g’)[vlk2 sn a sn2p sn2y’ 8n 
S 

+&v313k4 sn a sn2p  sn2y‘(sn2g’+sn2y’) 

+4v313k6 sn3a sn4/3’ sn4y’] d p  dy’+ O(v4). 

The left-hand side of (22) may be determined using (19) and (21) but the right-hand side 
requires the evaluation of several lengthy and extremely tedious integrals. It seems not 
worthwhile to give details of these here, but in an appendix we indicate the technique 
used and evaluate as an example the contribution coming from the first term of the 
integrand of (22); a reader interested in further details will find helpful the monograph 
of Byrd and Friedman (1971). The result for (22) is, to errors of O(v4), 

SAY[ 1 + &l + k2)v212]/k = ivl sn a + v313[&(l + k 2 )  sn a +$k2 sn2a], 

and so 

SAY = i v l k  sn a{ 1 + v212[&k2 sn2a -&l + k2) ]  + O(v4)}. (23) 

This is the required expansion for the eigenvalue. 

(18) and (19) we have to order v2 
In equation (7) for (xixi+,) the integral associated with SAY is 1:. If we make use of 

2 ~ 2 1 0  = No 1 1 ss (sn2y - sn2g)k sn2b sn2y[ 1 + &v212k2(sn2fi + sn’y)] 8n 
S 

x [ 1 + $v2I2k2(sn2b + sn2y)] db dy 

= -[1 1 +%l +k2)v212], 

3k 
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whence by (20), (21) 

1 I: = -[l+&(l+k2)v212+O(~4)] 
4 3  

Here again we have omitted details of the integration. 

directly from (13) which after a series expansion and the usual integration yields 
To lowest orders the expression (I:)’ ought to be equal to (x’) ; this can be checked 

(x’) = 3[1+&(1 +k2)V21’+O(v4)] (25) 
which is indeed the square of (24). The fact that (x2) -(I:)’ = O(v4) is also useful in 
estimating the infinite series in (7) for we may now write 

where 

m m  

< c  IT^+ 1)2 = (x2) -(I:)’ = 0(~4). 
n =  1 m = O  

An expression for io was already obtained for the calculation of the partition function 
(Rae 1974), namely 

Lo = 1 + v21’[;k2 sn’a - &l + k’)] + O(v4). (27) 

The results (27), (24) and (23) give us explicit forms for all the components of (26) so we 
have finally 

[ (xjxj+,) = j-vlksna 1- ( v212k2 sn2a 8v212(1 + k 2 )  
9.25 

+ 15 

x~[1+&v2l2(1+k’)+O(v4)]. (28) 

This expression is of the form expected with exponential fall off for fixed (small) values of 
v and large 1. At the cost of some extremely laborious calculations the higher-order 
corrections to (28) could be evaluated in a straightforward way. 

4. (yg,+,), (z,z j + , )  and susceptibilities at high temperatures 

The calculations for the correlation functions (yjyj+,) and ( z j z j+ , )  follow closely on 
those given above for (xixi+,.) and so will be sketched only in outline. 

The ellipsoidal wavefunction cely (Arcott 1956), properly normalized, is given by 

cn z[l +&v212k2 sn2z-&v212(k2+2)+O(v4)]. (29) 

This along with (18) allows the calculation of the integral J y  given by (10) with the result 

ikJ3 ‘I’ 
cem4 = (,) 

v’l2( 1 - 2k2) 
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and again as a check we may show ( y 2 ) - ( J y ) ’  = O(v4). The eigenvalue c l?  is best 
obtained by putting y = 0, p = K+iK‘ in its eigenvalue equation (4) to obtain 

CAY celp?(K + iK’, 0) 

= [[ (sn2y‘ - sn2P) exp celpy(/3’y’) dp‘ dy‘. 
87t 

S 

The calculation now proceeds as with (22) and evaluation of the various integrals leads 
to 

+ 0(v4)) .  
ikvl cn a v212(2k2 - 1) v212k2 cn2a - (’+ 50 10 

CA? = ~ 

3 

In order that the interaction strengths a, b, c may take real values with all possible 
combinations of signs the parameter a must lie in the complex z-plane on the lines 
Im z = f K’. It follows that i cn a is real so CAY is real as is required. The y-y correlation 
function is now obtained as 

ivlk cn a v212k2 cn2a 8 +- v 2 ~ 2 ( i  - 2 ~ )  + 0 ( ~ 4 )  
= [T( ’+ 15 9 . 2 5  

x f[ 1 + & V T (  1 - 2k2) + O(v4)I. (31) 

The calculation for ( z j z j +  ,) follows a similar pattern. The normalized ellipsoidal 
wavefunction 

dely(z) = - dn z [  1 + &v212k2 sn2z - &v212( 1 + 2k2) + O(v4)] (32) (i;) l j 2  

is used in the same way as before to calculate the integral K? as given by (12) with 
n = m = 0. The result is 

1 ( v2l2Y5-k2) 

K y = J 5  l -  
(33) 

The appropriate eigenvalue dA? is in this case obtained by choosing y = 0, /.I = K in 
the eigenvalue equation to obtain 

dAy delp?(K, 0) 

= II (sn2y‘ - sn2fi’) exp dn a dn p’ dn y‘ delpy(p’, y ’ )  d/3‘ dy’. 8n 
S 

When this is expanded as a series in v and integrated it yields for the eigenvalue 

ivl dn a 
3 

dAY = ___ (1 -&v212 dn2a+&p212(2-k2)+O(v4)]. (34) 
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Following the remarks made after equation (30), the quantity i dn a is real and therefore 
so is the eigenvalue. The z-z correlation function can now be written as 

.413’ 
ivldna v212 dn’a 8 + -v212(k2 - 2) + O( 

= 15 9 . 2 5  

x 3[ 1 - &v212(2 - k 2 )  + 0(v4)]. (35) 
If to the system described by Hamiltonian (1) we add an external magnetic field the 

model becomes insoluble. Even the partition function has so far defied calculation and 
so cannot be used to determine susceptibilities. The latter can however be obtained from 
the correlation functions through the well-known fluctuation-dissipation theorem (see 
for example Stanley 1971). For the susceptibility in the x direction we have 

I N N  m 

xx = lim c 2 ( x i x j >  = v<x2)+2v < x ~ x ~ + ~ ) .  
~ + m  NkBT i =  j =  r =  1 

By substituting (7) in this and performing the sum over r we obtain 

and by estimating the infinite series in the manner used in equation (26) we are led to 

In (23), (24) and (27) we have at hand all the contributions to this formula. The final result 
is 

x x  = fv[l+fvlksna+$v212k2 sn2a+&v212(1+k2)+~v313k3 sn’a 

+&v313k(i +k2)sna+O(v4)]. (37) 

The susceptibilities in the y and z directions are also given by formulae of the same 
structure as (36) but utilizing CA!, JY and dAY, ICY respectively. The final results for these 
are 

xy = iv[1 +$ivlk cn a -$v212k2 cn2a+&v21’(1 -2k2)-&iv313k3 cn’a 

+&iv313k(l -2k2)cna+O(v4)] 

xz = &~[l +$vl dna-$v2l2 dn2a+&v212(k2-2)-&iv313 dn’a 

+ &iv3l3(k2 - 2) dn a + O(v4)]. 

5. Conclusions 

(38) 

(39) 

It has been shown in the preceding sections that exact expressions may be obtained in 
terms of ellipsoidal wavefunctions for pair correlation functions and susceptibilities 
of the anisotropic classical Heisenberg model. Explicit high temperature expansions 
are comparatively straightforward to obtain and are given up to O(T-4) in $§ 3 and 4. 



Correlation functions of the classical Heisenberg model I 355 

Corresponding results for low temperatures are much more difficult to obtain; an 
attempt for this limiting case is presented in the companion paper to this one. 

The final formulae given in this paper are still rather complicated and in view of the 
extremely lengthy calculations involved, though not presented explicitly in this article, 
it is as well to make some check on their validity. For the correlation functions this can 
be done by using them to caiculate (H), a quantity which can be found independently 
from the partition function. We have from (1) 

- a(xixi + 1 ) + WYiyi + 1 ) + c(zizi + I ) 
(H) -- - 

N 

and on substituting from (3) ,  (28), (31 )  and (35) ,  

lZk4 sn4a 2I2k2(1 + k 2 )  snZa 12(7k4 - 12kZ + 7)) 
135 675 + v 3 1 2  - i 45 

But the left-hand side of (40) is related to the partition function Z by 

1 810 
N N av A~ av l n Z = - -  (H) 1 --=-- 

and if we calculate this using the value of ,lo given in R?e (1974) it agrees exactly with the 
right-hand side of (40). 

Finally we look at some limiting cases. In order to make two of the interaction 
strengths a, b, c equal it is necessary to take the parameter k as 0 or 1 and it has already 
been shown that in these cases the ellipsoidal wavefunctions become spheroidal functions 
(Sleeman 1967, Rae 1974). In this case our formulae such as (9)and (36) reduce to formulae 
given by Joyce (1967) and Thompson (1968). More explicitly, if we look at the case 
b = c = 0, a = J corresponding to k + 1, a -+ CO +iK’, 1 = J we have to put the latter 
values into formulae (28) and (37) which immediately reduce to the corresponding 
formulae given by Thompson (1968). In order to obtain the fully isotropic case 
a = b = c = J it is necessary to let o! = iK’+ U, 1 = Ju with U real and then take the 
limit U -, 0. Each of the correlation functions (28), (31) and ( 3 5 )  then becomes 

and each of the susceptibilities becomes 

$v[ 1 + $vJ+  p J 2  +&v3J3 + O(v‘+)]. 

These expressions are in complete accord with the results derived for the isotropic 
Heisenberg model (Fisher 1964). 

Appendix. Evaluation of integrals 

The results obtained in & 3 and 4 depend on the evaluation of many integrals of Jacobian 
elliptic functions. In this appendix we indicate the method used and evaluate as an 
example the contribution from the first term of (22). 
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The technique ysed is to reduce all the integrals in this article to combinations of the 
two standard forms : 

2 K  K +  2 i K ’  

Y2, = s-2K sn2,z dz, 4;, = s sn2“zdz. 
K - 2 i K ’  

For these integrals there are available recurrence formulae (Byrd and Friedman 1971, 
Arscott 1956) : 

(n+ l )k29 ,+ , -n (1  +k2)4+(n-l)J5,-_, = 0, 

and the same for 9‘, which permit all the integrals to be expressed in terms of those with 
n = 0 and n = 2. The last mentioned integrals take the values 

4(K - E )  4iE’ 
,Yo = 4K, 4; = 4iK’, $2 = ~ 9; = 7’ k2  ’ 

where K ,  K‘  and E ,  E’ are the usual complete elliptic integrals of the first and second 
kinds. A systematic use of the above technique allows all our integrals to be calculated. 

As an example we calculate the first term on the right-hand side ofequation (22) which 
leads to the following integral : 

“ss (sn2y’- sn2j‘) sn’j’ sn2y’ dp’ dy’ 
8 7 ~  

S 

= E( 16iE‘ 
87~ 3k 

16i(K - E )  [2( 1 + k2)E’ - k2K‘]) 
3kb 

T [ 2 ( 1 +  k2)(K -E)-k2K] - 

1 
(KK’ -EK’ -KE’ )  = -. - - -- 

3 z k 2  3k2  

In the last step we used Legendre’s relation EK‘ + E’K - K K ’  = 4 2 .  
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